Salvianolic acid Y: a new protector of PC12 cells against hydrogen peroxide-induced injury from Salvia officinalis.

نویسندگان

  • Jun Gong
  • Aichun Ju
  • Dazheng Zhou
  • Dekun Li
  • Wei Zhou
  • Wanli Geng
  • Bing Li
  • Li Li
  • Yanjie Liu
  • Ying He
  • Meizhen Song
  • Yunhua Wang
  • Zhengliang Ye
  • Ruichao Lin
چکیده

Salvianolic acid Y (TSL 1), a new phenolic acid with the same planar structure as salvianolic acid B, was isolated from Salvia officinalis. The structural elucidation and stereochemistry determination were achieved by spectroscopic and chemical methods, including 1D, 2D-NMR (1H-1H COSY, HMQC and HMBC) and circular dichroism (CD) experiments. The biosynthesis pathway of salvianolic acid B and salvianolic acid Y (TSL 1) was proposed based on structural analysis. The protection of PC12 cells from injury induced by H2O2 was assessed in vitro using a cell viability assay. Salvianolic acid Y (TSL 1) protected cells from injury by 54.2%, which was significantly higher than salvianolic acid B (35.2%).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Some Lamiaceae Species on NO Production and Cell Injury in Hydrogen Peroxide-induced Stress

Nitric oxide (NO) is a key mediator that plays an important role in pathogenesis of various chronic diseases like Alzheimer’s disease and Parkinson’s disease. Additionally, there is a great attitude for finding natural compounds, which could control and inhibit NO production in pathological conditions. Therefore, we were encouraged to investigate the effects of some Lamiaceae species on NO prod...

متن کامل

Effects of Some Lamiaceae Species on NO Production and Cell Injury in Hydrogen Peroxide-induced Stress

Nitric oxide (NO) is a key mediator that plays an important role in pathogenesis of various chronic diseases like Alzheimer’s disease and Parkinson’s disease. Additionally, there is a great attitude for finding natural compounds, which could control and inhibit NO production in pathological conditions. Therefore, we were encouraged to investigate the effects of some Lamiaceae species on NO prod...

متن کامل

Salvianolic Acid B Inhibits Hydrogen Peroxide-Induced Endothelial Cell Apoptosis through Regulating PI3K/Akt Signaling

BACKGROUND Salvianolic acid B (Sal B) is one of the most bioactive components of Salvia miltiorrhiza, a traditional Chinese herbal medicine that has been commonly used for prevention and treatment of cerebrovascular disorders. However, the mechanism responsible for such protective effects remains largely unknown. It has been considered that cerebral endothelium apoptosis caused by reactive oxyg...

متن کامل

بررسی اثر حفاظتی چند گیاه دارویی از خانواده نعناعیان بر سمیت القا‌شده توسط پپتید بتاآمیلویید در سلول‌های PC12

Background: Excessive accumulation of beta-amyliod peptide (Aβ), the major component of senile plaques in Alzheimer's disease (AD), causes neuronal cell death through induction of oxidative stress. Therefore, antioxidants may be of use in the treatment of AD. The medicinal plants from the Lamiaceae family have been widely used in Iranian traditional medicine. These plants contain compounds with...

متن کامل

Hydrogen peroxide and nitric oxide are involved in salicylic acid-induced salvianolic acid B production in Salvia miltiorrhiza cell cultures.

Hydrogen peroxide (H2O2) and nitric oxide (NO) are key signaling molecules in cells whose levels are increased in response to various stimuli and are involved in plant secondary metabolite synthesis. In this paper, the roles of H2O2 and NO on salvianolic acid B (Sal B) production in salicylic acid (SA)-induced Salvia miltiorrhiza cell cultures were investigated. The results showed that H2O2 cou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 20 1  شماره 

صفحات  -

تاریخ انتشار 2015